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Van Leer limiting uses nearby cell-means of a function (integral mean-values—weig
by a prescribed positive density—that are taken over each of a collection of nearby co
tational cells) to restrict the range of values allowed to a linear approximation of the func
on a given central cell. These nearby cells—whose cell-means are actually involved i
limiting—are called the central cell'seighbors and the set of these neighbors is calle
the central cell'sneighborhood The use of certain neighborhoods in multidimension
Van Leer limiting can force even linear functions to be subject to restriction over the cel
cell. A simple geometric property characterizes those neighborhoods whose use wou
require that any linear functions be limited. (Such a neighborhood is cajleddneighbor-
hood for Van Leer limitingince its use would not preclude second-order accuracy in the Ic
linear approximation of a smooth function by one that is Van Leer limited—unless the a
tional, here unspecified, details for obtaining the approximation preclude it by themsel
The characterization is as follows, where it is presumed that the cells lie in a finite din
sional vector spacéne has chosen a good neighborhood for a given central cell if a
only if the convex hull of the centroids of its associated neighbors contains that central

Details now follow.

In the context of Van Leer limiting when locally approximating a function, all cell-mea
are prescribed. The approximating functions are to be piecewise-linear with a pos
differentlinear function on each mesh cell. Dukowicz and Kodis [2, pp. 213-214, Sect. 2
describe a form of Van Leer limiting on these approximations that is applicable in on
more dimensions as follows:

DerINITION.  Multidimensional Van Leer limiting. On all cells the mean value is t
remain as prescribed—but, on a given central cell, one is restricted to those approxin
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linear functions whoseange of values lies in the smallest interval containing the givel
cell-means associated with the central cell’s neighboring cells

(Should the cell's own mean value not lie in the latter range, one chooses a grad
of zero. Surprisingly, this can also preclude second-order accuracy when approxima
smooth functions using an inappropriate set of neighboring cellsin more than one dimens
This note’s penultimate paragraph contains an example.) A definition similar to Dukowi
and Kodis’ is found in Barth and Jespersen [1, p. 5]. In this note the cell centroids &
the cell-means are to be based on the same (possibly constant) prescribed positive de
function.

Such limiting in one space dimension (Van Leer [5, pp. 289-290; 6, pp. 117-118]) dc
not affect any globally defined linear function as long as it involves both a left neighb
and a right neighbor. That is to sany given linear functiornL satisfies the Definition’s
criteria when it both specifies the mean cell values on the neighboring mesh inten
and is simultaneously used as the local linear candidate function on the central intel
This is independent of which interval(s), out of a collection of possibly irregular me:
intervals to the left, that one takes as left-neighbor(s); and which interval(s) to the right,
right-neighbor(s). (Consequently, Van Leer limiting does not, by itself, preclude secor
order accuracy on any such mesh in one dimension.) This one-dimensional result is al
consequence of the following multidimensional.

Remark. There exists no linear function that will be subject to Van Leer limiting on
given central cell if and only if that cell is contained in the convex hull of the centroic
of its neighbors. Hence, one has chosen a good neighborhood for a given central ce
and only if the convex hull of the centroids of its associated neighbors contains that cer
cell.

Examples of good and not-so-good neighborhoods (constant density) are illustrate
Fig. 1. The convex hull appropriate to Fig. 1a is enclosed by the dotted contour. Barth :
Jespersen [1, p. 6] reject two gradient estimates involving configurations like Fig. 1e
but not because of the possibility that the limitiitgelf can preclude exact results when
approximating linear functions. They accept configurations like Fig. 1g for their es
mates.

Inspired by Fig. 1f, suppose the interior point®f a tetrahedroiC satisfyL; (x) <0,
1<i <4 for some four linear functionk;. Then any neighborhood @ that consists of
four cells(Ci){ having centroidsci )7 that satisfy(L; (Ci) > 0, j #i){"_, would be a good
neighborhood ofZ. Geometrically, this asks that each of the tetrahedron’s four “exteric
vertex solid angles” contain a neighboring cell’'s centroid.

Proof of the remark. Supposex, lies in the given cellC but outside the convex hull
H ) of the centroids/\7(C) of C’s chosen “neighboring cells\/(C). Then a linear
function that is subject to Van Leer limiting can be constructed as follows.PLbe a
(hyper) plane that (strictly) separatesirom H ), and letv be the unit normal foP that
points from the convex hull towardg. The linear function

L(X) :=v - (X—Xp)

increases in the direction ofand is negative of 7 ¢, (in particular, at the centroids’(C)
of C’s “neighbors”), and the part & that lies in the positive half-space fbris nonempty.
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FIG.1. Some good and some not-so-good neighborhoods of a centrél.cell

A constantc > 0 can be added th,
Lc = L + C,

so thatL . is positive both orC and onH;,. The mean value oL, over one ofC’s
neighboring cells is the value &f. at that neighbor’s centroid. Sinéewas negative at all
of these neighboring cells’ centroids but was @tL.'s maximum ovelC is at least,
which exceeds the maximum &f’s cell-means over the neighborhood. %q,is subject
to Van Leer limiting.

Onthe other hand, suppoSas contained in the convex hit 57 ¢, a convex polyhedron
whose vertices are a subset@tC). Then a given linear functioh takes on its extreme
values ovef{ ) at points in\'(C). SoL’s values orC lie between these extreme values
sinceC is contained it 7 c,. These extreme values are also the extreméssafell-means
over N'(C). Thus,L is not subject to Van Leer limiting o8. This completes the proof of
the Remark.

Some Properties of Good Neighborhoods

1. In typical irregular grids in more than one dimension, there always exists a g
neighborhood for a grid-cell that is sufficiently far from grid boundaries.

2. Typical choices of a minimal number of immediate neighbors may not yield a gc
neighborhood; see, e.g., Fig. 1b and Fig. le.

3. A set of cells that contains a good neighborhood as a subset is itself a good ne
borhood; e.g., compare Fig. 1f with Fig. 1g.

4. Cells in good neighborhoods may overlap (but they don’t in most applications)

5. Being a good neighborhood is invariant under linear maps of the mesh.
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6. The Van Leer limited linear approximations of a given linear function are subje
to the same restrictions—if any—on their gradients when the mesh is uniformly expant
or shrunk by a change in scale.

(If the density is not constant, then the last two are true only asymptotically—as the m
gets small—and where the density is smooth.)

Not being allowed to reproduce linear functions can affect convergence rates of Io
linear approximations. For the following discussion of convergence, suppose (a) that
density is constant; (b) that the mesh is not too distorted: the ratio of the size of a ce
circumscribing sphere to its inscribing sphere, taken over all cells, is bounded; (c) tha
absent Van Leer limiting—the local approximation algorithm is exact for linear functior
andO(h?) accurate for smooth nonlinear functions (witbeing the diameter of local mesh
cells); and (d) that the gradient of the function being approximated is not zero nearby.

Consequences for Convergence

1. The use of bad neighborhoods reduces the potential accuracy of Van Leer limi
approximations of certain smooth functions to first-order. For example, if the linear functi
L is subject to Van Leer limiting on some mesh cell, then, as the grid is shrunk, none of
(limited) approximating linear functions has a gradient converging locally to brahd
the (limited) linear approximations themselves converge locally twith no better than
first-orderO(h) £ o(h) accuracy. A quadratic function with the same linear hafidres no
better asymptotically.

2. For sufficiently good neighborhoods, however, local linear approximations
smooth (e.g., twice differentiable) functions are not subject to Van Leer limitiny as
gets small and, so, converge with second-o@dén?) accuracy. “Sufficiently good,” here,
means that the shadow (via orthogonal projection) of the centraCoafl any line is well
inside the shadow of the convex htill ¢, on that same line. By “well inside” is meant that
(a) itis inside, and (b) itis more thath) from the either end of the shadow&fy; ¢,. For
this it is also supposed that the approximation algorithm, absent Van Leer limiting, is sta
against perturbations dsgets small—i.e., changes in the data of oreé@n size produce
changes in the (unlimited) approximation that are of the same @derin size.

The author believes that, in these circumstances amdgags to zero, Van Leer limiting
takes effeconlyif the function being approximated is too rough to be entitled taQtie?)
accuracy one associates with local approximation by linear functions.

In current computational practice the set of poi@itever which the values of a linear
function L are being limited, and the set of poin‘t_éwhich are associated with the values
involved in the limiting, may differ from the se® and\/(C), respectively, used above. In
this more general context, it follows as before thats a*“good set of pointsfor the Van
Leer limiting of linear functions ovet if and only ifC is a subset of{ (), the convex hull
of V.

For example, Durlofsket al.[3, pp. 66—67] consider four triangles grouped as in Fig. 1€
But they limit the values of a linear function over a 8etf only three points from the central
triangle C, namely, at the midpoints d®’s three sides. The values doing the limiting in
their case are still associated with the centroids (constant density) of the three neighbc
triangles; i.e.N' =N (C) as before. Thus, the (possibly irregular) triangulations in [3] tha
can lead to second-order accuracy are characterized for each triaragefollows: the



GOOD NEIGHBORHOODS FOR VAN LEER LIMITING 241

@ (®)

FIG. 2. Bad neighborhoods for Van Leer limiting at only the midpoint<df sides.

triangle determined bZ’s three neighboring cells’ centroids must contain the midpoin
of C’s three sides. For example, this is violated in each configuration in Fig. 2—since
each, the centroids of the left and the right triangle are both below the midpoift's of
left and right side. Indeed, the functidn(x) given by the (signed) distance that the poin
x is from the line containing the trianglé’s base is both linear and subject to Van Lee
limiting at two of the three midpoints. (In fact, Fig. 2b is sufficiently distorted so that V
Leer limiting—over eitheC or all of C—limits one to the appropriateonstantfunction,
because the value af at C’s centroid lies outside the interval containing its values at tf
three neighboring centroids.) The result in all these cases is first-order accuracy locall
any limited approximation th—and associated non-convergent gradient estimates.

Inwork that follows up on Durlofskgtal., Liu[4, p. 704, Definition 3.1] uses the centroids
of a neighborhood like Fig. 1g fo¥/ instead. This now allows the exact approximation c
linear functions at the three side-midpoigtssince, nowC c C € H(N).
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